

HiSense™ QPlex qPCR Master Mix

Cat. No. QP-05

1. Product Information

Introduction

HiSense™ QPlex qPCR Master Mix is designed specifically for real-time PCR with probe. This mix contains HotTaq DNA Polymerase and components (except primers, template and water) necessary to perform real-time PCR using probe. Direct detection of PCR product is monitored by measuring the increase in fluorescence releasing from probe.

Product Description

HiSense[™] QPlex qPCR Master Mix is supplied in a 2X concentration and contains sufficient reagents to perform reactions. The mix is optimized for Probe reactions and contains HotTaq DNA Polymerase, dNTPs, passive reference, and optimized buffer components.

2. Contents and Storage

Materials Provided

Label	QP-05
2X QPlex qPCR Master Mix	5 ml
50X ROX (reference dye)	200 μl

Storage

Store at -20°C

Check the label on the product for expiration date.

3. Test Protocol

Preparing for qPCR reaction

Before use, mix the 2X QPlex qPCR Master Mix well by inverting the tube several times.

Do not vortex!! - Inverting and tapping are enough to mix.

1. Prepare a reaction master mix by adding the following components (except template DNA) for each $20\mu l$ reaction to a tube at room temperature.

Reaction components	Volume
2X QPlex qPCR Master Mix	10 μl
Forward primers, (10pmol/μl)*	0.5 μl
Reverse primers, (10pmol/μl)*	0.5 μl
Probe**	1 μl
50X ROX	0X, 0.1X and 1X
Template DNA***	2 μl
DNase free water	up to 20μl
Total volume	20μl

*A final primer concentration of 0.2 μ M is most likely to yield good results. However, should further optimization be required, try adjusting primer concentrations in the range of 0.1 to 1.0 μ M.

**The probe concentration varies depending on the real-time PCR instrument being used and the type of fluorescent label.

Refer to the instrument manual and the probe data sheet to determine the appropriate concentration.

- *** The optimal quantity varies depending on the number of target copies present in the template solution. Use no more than 100 ng.
- 2. Gently mix (do not vortex) the master mix by inverting, centrifuge briefly and dispense appropriate volumes into PCR tubes or plates.
- 3. Add template DNA to the individual PCR tubes or wells containing the master mix.
- 4. Centrifuge briefly.
- 5. Program the thermal cycler according to the recommendations below, place the samples in the cycler and start the program.

Thermal Cycling Condition

1. Two-step cycling protocol

Steps	Temp(°C)	Time	Cycles
Pre-denature	95	5 min	1
Denature	95	20 sec	40
Anneal / Extend*	60	60 sec	40

 $[\]mbox{^{\star}}\mbox{Optimal}$ Anneal / Extend temperature depends on the melting temperature of the primers.

Data acquisition should be performed during the anneal / extend step.

2. Three-step cycling protocol

- I i i c c c c c c c c c c c c c c c c c			
Steps	Temp(°C)	Time	Cycles
Pre-denature	95	5 min	1
Denature	95	20 sec	
Anneal*	60	30 sec	40
Extend**	72	30 sec	40

^{*}Optimal annealing temperature depends on the melting temperature of the primers.

[Appendix A]

ROX concentration for Instruments

Instruments		Cat. No.
Brand	Model	Cat. No.
BioRad	iCycler, MyiQ, MiQ 2, iQ 5,	
DioNau	CFX-96, CFX-384	
MJ Research	Opticon, Option2, Chromo4, MiniOpticon	
Qiagen	Roto-Gene Q, Roto-Gene3000, Roto-	No ROX
Qiageii	Gene 6000	(0X)
Eppendorf	Mastercycler realplex	
Illumina	Eco RealTime PCR System	
Roche	LightCycler 480, LightCycler 2.0	
4.51	5700, 7000, 7300, 7700, 7900, 7900HT,	High ROX
ABI	7900HT Fast, StepOne, StepOne plus	(1X)
ABI	7500, 7500 Fast, QuantStudio (3, 5, 7)	Low ROX
Stratagene	MX3000, MX3005P, MX4000	(0.1X)

^{**} Data acquisition should be performed during the extend step.